联系我们

三电平软开关变换器

网站首页 » 新闻 » 公司动态 » 三电平软开关变换器

三电平软开关变换器

近年来,随着电力电子技术的发展,对直流变换装置的要求越来越高,尤其是在高压大功率应用场合。为了减小高压大功率变换器开关器件的电压应力,提出了三电平直流变换器的方案,可使开关管的电压应力为输入直流电压的一半。


1.三电平直流变换器


  三电平直流变换器的基本电路如图4-23所示。电容CD1和CD容量相等,并且很大,它们的电压均为输入直流电压的一半,即Ud1=Ud2=Uin/2。VD5和VD6为钳位二极管,通过控制四只开关管VT1~VT4,在A、B两点得到了一个幅值为Uin/2的交流方波电压UAB。经过高频变压器和输出整流桥后,在C、D两点得到幅值为Uin/2N的直流脉冲电压,再经过输出滤波后,得到输出直流电压U。N是变压器的原、副边匝数比。通过调节Ucd的占空比,就可以调节输出电压U。

 

图4-23基本的三电平直流变换器

 


2.三电平直流变换器的软开关技术


  如前所述,为了提高开关频率,必须实现开关管的软开关。相关文献提出的几种软开关三电平直流变换器,大体上可分为两类:零电压开关三电平直流变换器和零电压/零电流开关三电平直流变换器。

  零电压开关三电平直流变换器基本是在直流变换器的基础上,外加了变换电感和电容如图4-24所示,C1、C2、C3、C4是开关管的结电容;L1k是变换电感,由外部电感和变压器的漏感组成。零电压开关三电平直流变换器利用结电容C1、C2、C3、C4实现各开关管的零电压关断;通过储存在变换电感L1K中的能量对结电容进行充放电,使相应的结电容两端电压达到零,以此来实现开关管的零电压开通。


该电路的优点是:

  ①电路拓扑结构简单

  ②负载波动不大时,基本上实现了零电压开关

  ③开关管的电压应力是输入直流电压的一半。

 

  该电路的缺点是


①虽然开关管VT1和VT4利用折算到电源适配器变压器原边的输出滤波电感(其数值很大)和变换电感很容易实现零电压开关,但是VT2和VT3只能利用变换电感来实现零电压开关。由于变换电感一般较小,在负载较小时,其能量不足以实现零电压开关。

 ②在零状态时,一次侧不向负载提供能量,但一次侧有环流存在,在开关管和电源适配器变压器的原边绕组中将产生通态损耗,影响功率变换器的效率。

  为了克服电路中当负载较轻时,变换电感L1中的能量不足以实现内部开关管的零电压开关的问题,提出了宽负载范围零电压开关三电平直流变换器,如图4-25所示。电路中增加了由电容C23、C24和电感LAK组成的辅助变换电路。该电路通过开关管的结电容实现开关管的零电压关断。当负载较轻时,储存在变换电感LK中的能量较少,不足以实现内部开关管的软开通。该电路通过辅助变换电路,利用辅助变换电感LAk中的能量,帮助变换电感LK对结电容进行充放电,使VT2和VT3两端电压达到零,以此来实现内部开关管的零电压开通。该电路的优点是:

①克服了内侧开关管在负载较轻时,不能实现软开通的缺点,在相当宽的负载范围内,均可实现开关管理体制零电压开关。

②开关管的电压应力是输入直流电压的一半。


  该电路的缺点是:

①在零状态时,一次侧环流仍然存在,影响了功率变换器的效率;

②辅助变换电路的增加,尤其是辅助变换电感LAx的增加,导致了环流能量的增加。因此,造成了通态损耗的增加,降低了功率变换器的效率。

为了消除零电压开关三电平直流变换器零状态时电源适配器变压器原边存在的环流,美国的F. CANALES提出了零电压、零电流开关三电平直流变换器,实现了开关管VT1、VT4的零电压开关和开关管VT2、VT3的零电流开关,并消除了零电压开关三电平直流变换器零状态时变压器原边存在的环流,减少了通态损耗,提高了功率变换器的效率。其电路图如图4-26(a)所示。

 

 

这个电路和零电压开关三电平直流变换器的主要差别在于:增加了连结电容Cs以及在变压器二次绕组中增加了辅助开关SAux和钳位电容CAUx,连结电容Cs分别将外侧管VT1、 VT4和内侧管VT2、VT3的开关过程连接起来。在变换器稳态工作时,电容Cs的电压恒为U。/2。辅助开关SAx和钳位电容CAx使变压器一次侧电流复位为零,以实现内侧开关管的零电流开关。外侧开关管vT1和VT4利用结电容C1和C4实现了零电压关断;利用漏感和输出电感中的能量对结电容C1和C4进行充放电,使VT1和VT4两端电压达到零,以此来实现外侧开关管的零电压开通。当变换器处于零状态时,辅助开关SAx接通,钳位电容CAux两端的电压反映到变压器的一次绕组并加在漏感LK的两端,变压器一次侧的电流以斜率NUAUX/L1K线性下降到零,以此来实现内侧开关管的零电流开关;由于一次侧电流为零,不能提供负载电流,此时负载的能量由钳位电容CAx来提供。该电路的优点是


①在很宽的负载范围内,实现了外侧开关管的零电压开关和内侧开关管的零电流开关,且不受负载范围和输入电压的影响;

②消除了零状态时变压器一次侧存在的环流,减少了通态损耗,提高了功率变换器的效率;

③开关管的电压应力是输入直流电压的一半。


该电路的缺点是:增加了辅助开关,电路较复杂


目前,有人提出了另外一种零电压零电流开关三电平直流变换器,其电路图如图4-26(b)所示。它采用了阻断电容C4作为阻断电压源,使变压器一次侧电流在零状态时减小到零,从而实现内侧开关管的零电流开关。零状态时,由于一次侧电流减小,不足以提供负载电流。此时,输出整流管VD22和VD23同时导通,使电源适配器变压器一、二次侧电压均为零。因此,阻断电容C的电压全部加在饱和电感和漏感两端,使一次侧电流很快减小到零。利用结电容C1和C4实现了外侧开关管的零电压关断;利用漏感和输出电感中的能量对结电容C1和C4进行充放电,使VT1和VT4两端电压达到零,以此来实现外侧开关管的零电压开通为了防止一次侧电流在零状态时减小到零后继续反方向流动,必须切断一次侧电流的反向通路,在变压器一次电路中,串入一个饱和电感Ls。在零状态时,饱和电感工作在线性状态,防止一次电流反向流动;在+1状态和-1状态时,饱和电感工作在饱和状态。该电路有两个缺点:


①饱和电感损耗较大,限制了开关频率的提高;

②饱和电感较难设计,容易导致较大的占空比丢失

  为此,有人提出了另外一种零电压零电流开关三电平直流变换器,其电路图如图4-26(c)所示。为了防止电源适配器变压器一次侧电流在零状态时减小到零后继续反方向流动,在VT2和VT3中分别串入二极管VD2和VD3,消除了加入饱和电感后带来的负作用。

  由以上的分析可以看出,零电压开关三电平直流变换器在负载较小时不足以实现内侧开关管的零电压开关,而且在零状态时,电源适配器变压器一次侧存在环流,降低了变换器的效率;宽负载范围零电压开关三电平直流变换器,虽然克服了内侧开关管在负载较轻时不能实现软开通的缺点,但是在零状态时,电源适配器变压器一次侧环流仍然存在。零电压零电流开关三电平直流变换器在很宽的负载范围内,不仅实现了所有开关管的零电流开关,并使之不受负载范围和输入电压的影响,而且消除了零状态时变压器一次侧存在的环流,提高了变换器的效率。因此可以预言:在三电平直流变换器软开关技术中,零电压零电流开关三电平直流变换器将成为研究热点,并将应用于工程实践中。

 

东莞充电器

文章转载自网络,如有侵权,请联系删除。
| 发布时间:2018.06.04    来源:电源适配器厂家
上一个:适配器厂家质量体系的建立下一个:符合EMI标准的电源技巧

东莞市玖琪实业有限公司专业生产:电源适配器、充电器、LED驱动电源、车载充电器、开关电源等....